دانشگاه آزاد واحد شهرکرد

دانشکده فنی و مهندسی

پایان نامه برای دریافت درجه کارشناسی ارشد

در رشته مهندسی عمران- زلزله

عنوان :

ارزیابی ضرایب رفتار قابهای بتن آرمه با دیوار برشی متداول در ایران با بهره گیری از طریقه آئین نامه FEMA P695

 

استاد راهنما :

دکتر حسین تاجمیر ریاحی

 

 

استاد مشاور :

دکتر محمد علی رهگذر

 

 

بهمن    1391

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی گردد
(در فایل دانلودی نام نویسنده موجود می باشد)
تکه هایی از متن پایان نامه به عنوان نمونه :
(ممکن می باشد هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود اما در فایل دانلودی همه چیز مرتب و کامل می باشد)
فهرست مطالب
عنوان                                                                                                                          صفحه
 
چکیده-بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد—– 1
فصل اول « مطالعه ضریب رفتار و اجزاء تشکیل دهنده آن »
1-1 مقدمه -بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد- 3
1-2 روشهای محاسبه ضریب رفتار—————- 5
1-3 تشریح اجزای ضریب رفتار– 6
1-3-1 شکل پذیری———– 6
1-3-1-1 ضریب شکل پذیری کلی سازه———– 6
1-3-1-2  ضریب کاهش نیرو توسط شکل پذیری— 7
1-3-2 مقاومت افزون———- 9
1-3-3 درجه نامعینی———- 10
1-4  محاسبه ضریب رفتار توسط واکاوی تاریخچه زمانیبلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد————– 11
1-4-1  معیار های عملکرد در واکاوی دینامیکی تاریخچه زمانیبلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد——— 11
1-4-1-1 معیار تغییر مکان نسبی بین طبقات—— 12
1-4-1-1-1  معیار تغیر مکان نسبی طبقات طبق آئین نامه 2800بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد—– 12
1-4-1-1-2  آئین نامه ساختمانی بین المللی IBC-2000 بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد———– 12
1-4-1-2  معیار پایداری——- 14
1- 5 مطالعه ضریب رفتار با طریقه آئین نامهFEMA P695  بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد———– 14
1-6  نتیجه گیری————- 23
فصل دوم « مطالعه واکاوی استاتیکی غیر خطی »
2-1  مقدمه-بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد- 25
2-2   مروری بر روشهای تحلیل لرزه­ای سازه ها—– 27
2-2-1  تحلیل استاتیکی معادل– 27
2-2-2  تحلیل دینامیکی خطی– 28
2-2-2-1  تحلیل دینامیکی طیفی یا تحلیل مودال— 28
2-2-2-1-1  تعداد مودهای مورد نیاز جهت ترکیب– 29
2-2-2-2  تحلیل دینامیکی تاریخچه زمانی خطی— 29
2-2-2-2-1  خصوصیات شتابنگاشت­های انتخاب شده جهت تحلیل بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد— 29
2-2-3  تحلیل دینامیکی تاریخچه زمانی غیرخطی— 30
2-3  تحلیل پوش آور مرسوم—- 31
2-3-1 مطالعه مقایسه ای واکاوی استاتیکی غیر خطی با واکاوی دینامیکی غیر خطی——– 31
2-3-2  اساس تحلیل استاتیکی فزاینده غیر خطی— 32
2-3-3  مزایا و نتایج قابل حصول از واکاوی پوش آور– 33
2-3-4  روش انجام تحلیل پوش آور مرسوم ——– 35
2-3-5  ارکان اصلی در انجام واکاوی استاتیکی غیر خطیبلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد————- 36
2-3-5-1  تعیین مشخصات غیر خطی اجزاء——- 36
2-3-5-2   الگوی بارگذاری جانبی ————— 36
2-3-5-2-1  الگوی بارگذاری مطابق با آئین نامه 2800 ایران بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد——– 37
2-3-5-3  منحنی رفتاری—— 39
فصل سوم « اثر دیوار برشی در سازه های بتن آرمه »
3-1 مقدمه -بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد- 43
3-2  ویژگی کاربرد دیوار برشی در سازه‌های بتنی— 44
3-2-1  مطالعه رفتار سیستم ترکیبی قاب خمشی و دیوار برشیبلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد——- 45
3-2-2  مطالعه اندرکنش افقی در سیستم دوگانه—- 45
3-2-3  دیاگرام ونمودارهای شماتیک جابجایی،لنگر وبرش درسیستمهای دوگانه———– 46
3-3  اثر دیوار برشی بر اجزاء سازه—————- 47
3-3-1  ستونها————— 47
3-3-2  تیرها-بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد 49
3-4  رفتار دیوارهای برشی و عوامل مؤثر بر آن——- 49
3-4-1  ابعاد دیوارهای برشی—- 49
3-4-2  تعداد دیوارهای برشی— 49
3-4-3  ابعاد تیرها و ستون ها—- 50
3-4-4  نسبت مجموع ممان اینرسی دیوارهای برشی به ستونهابلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد——– 50
3-5  رفتار غیرالاستیک دیوارهای برشی———— 51
3-6  مطالعه ضرایب رفتار سازه‌های بتن مسلح دارای ارتفاعهای مختلفبلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد- 52
6-3-1  مطالعه ارتفاع اپتیمم دیوارهای برشی در سیستمهای دوگانهبلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد—– 53
6-3-2  عوامل مؤثر در ارتفاع اپتیمم دیوار———- 53
فصل چهارم « مدلسازی مسئله »
4-1  فرضیات مدلسازی——– 56
4-2  تحلیل استاتیکی خطی—- 59
4-3  تحلیل استاتیکی غیر خطی ( پوش آور ——- 61
4-3-1  انواع کنترل واکاوی پوش آور————— 64
4-4  تحلیل دینامیکی غیر خطی  (Incremental Dynamic Analysisبلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد- 67
 
فصل پنجم « ارزیابی ضرایب رفتار قاب ها و بحث و نتیجه گیری »
5-1 مشخصات دینامیکی مدل ها- 72
5-2  ضریب بیش مقاومت—— 72
5-3  محاسبه ظرفیت خرابی بوسیله واکاوی  IDA—- 73
5-4  مطالعه خرابی ها——— 81
5-5  مطالعه جابجایی نسبی طبقات————— 85
5-6 مطالعه وضعیت مدل چهار طبقه پنج دهانه پس از بالا بردن سختی دیوار طبقه اول آن- 86
5-7 نتیجه گیری————– 89
منابع و مآخذ-بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد 91
 
 
فهرست جداول
عنوان                                                                                                                          صفحه
 
جدول 1-1 نسبت دقت  طراحی– 16
جدول 1-2  نسبت دقت به کارگیری و کیفیت مصالح- 16
جدول 1-3  جهت محاسبه SSF بر اساس Tµ و T برای Dmin—— 20
جدول 1-4  جهت محاسبه SSF بر اساس Tµ و T برای Dmax—— 20
جدول 1-5 سطح نیاز طراحی—– 21
جدول 1-6 مقادیر قابل قبول CMR—————- 22
جدول 3-1 مقادیر درصد برش جذب شده توسط دیوارها به کل برش پایه سازه به مجموع ستونهای قاب ٨ طبقه با نسبت تغییر ممان اینرسیهای دیوارهای برشی— 51
جدول 4-1 مشخصات مصالح—– 56
جدول 4-2  انواع قاب ها——— 59
جدول 4-3 جزئیات مقاطع ستون و دیوارهای برشی قاب مدل 3 x 8بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد—- 60
جدول 4-4 جزئیات مقاطع تیر قاب مدل 3 x 8—— 60
جدول 4-5 محدوده مطلوب مصالح- 63
جدول 4-6 مقایسه ماکزیمم برش و جابجایی گسیختگی در مدل های مختلف————- 65
جدول 4-7 انواع شتاب نگاشت و ضریب نرمال سازی شتاب نگاشت هابلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد— 68
جدول 5-1 دوره تناوب سازه ها— 72
جدول 5-2 مقادیر برش پایه حاصل از تحلیل استاتیکی خطیبلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد———- 73
جدول 5-3  مقادیر برش پایه حاصل از واکاوی پوش آور- 73
جدول 5-4 مقادیرضریب بیش مقاومت————– 73
جدول 5-5 میانه نمودار IDA قاب ها————– 75
جدول 5-6  مقدار S475— 76
جدول 5-7 اختصار نتایج خرابی مدل ها———— 76
جدول 5-8  اختصار خروجی واکاوی  IDA———– 77
جدول 5-9 اندازه جابجایی بام در مدل های مختلف بر اساس واکاوی پوش آور————– 79
جدول 5-10 جابجایی موثر بام—- 79
جدول 5-11 مقادیر  مدل ها— 80
جدول 5-12 مقادیر SSFS —— 80
جدول 5-13 نتایج نهایی——— 81
جدول 5-14 نتایج واکاوی برای مدل 5×4 برای مدل با دیوار صلب تربلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد—– 87
 
فهرست شکل‌ها
عنوان                                                                                                                          صفحه
 
شکل 1-1 نمودار منحنی ظرفیت یک سازه متعارف— 7
شکل 1-2 طیف ارتجاعی و غیر ارتجاعی با شکل پذیری ثابتبلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد———- 8
شکل 1-3 حالت های کلی ناپایداری—————- 14
شکل 1-4 نمودار پوش آور——- 18
شکل 1-5 نمودار IDA———- 19
شکل 1-6 نمودار شتاب طیفی بر اساس پریود سازه— 19
شکل 2-1 مراحل اعمال بار جانبی به سازه، از ایجاد تغییرشکلهای ارتجاعی تا آستانه فرو ریزش در واکاوی پوش آور     32
شکل 2-2 منحنی پوش آور—— 35
شکل 2-3 دسته بندی رفتار خطی و غیرخطی اجزا، (الف): رفتار غیرخطی کنترل شونده توسط نیرو، (ب): رفتار خطی، (ج): رفتار غیرخطی کنترل شونده توسط تغییر شکل– 40
شکل 3-1 رفتار دیوار و قاب به شکل منفرد و اندر کنش سیستم دوگانهبلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد— 46
شکل 3-2 نمودارهای لنگر خمشی و برش خارجی سازه، همچنین لنگر و برش قاب و دیوار در سیستم دو گانه   47
-بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد———— 48
شکل 3-4 انواع متداول تخریب در دیوارهای برشی—- 52
شکل 4-1  نمایش شماتیک پلان مدل های سه دهانه– 57
شکل 4-2 نمایش شماتیک مقاطع طراحی شده برای قاب مدل 3 x 8بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد— 61
شکل 4-3 منحنی رفتار فولاد مورد بهره گیری———- 63
شکل 4-4 نمودار پوش آور مدل 8 x 3————– 66
شکل 4-5 نمودار پوش آور مدل 8 x 5————– 66
شکل 4-6 نمودار IDA برای  مدل 3  x8———– 70
شکل 5-1 نمودار IDA مدل هشت طبقه سه دهانه— 74
شکل 5-2 نمودار IDA مدل چهار طبقه سه دهانه—- 74
شکل 5-3 نمودار IDA مدل چهار طبقه پنج دهانه—- 75
شکل 5-4 نمودار پوش آور مدل 3×8————— 78
شکل 5-5 نمودار پوش آور مدل 5×4————— 78
شکل 5-6  : نمایش المان هایی که در آن مفصل پلاستیک ایجاد شده برای مدل 5×8——- 82
شکل 5-7  : نمایش المان هایی که در آن مفصل پلاستیک ایجاد شده برای مدل 3×8—— 82
شکل 5-8  : نمایش المان هایی که در آن مفصل پلاستیک ایجاد شده برای مدل 5×6——- 83
شکل 5-9  : نمایش المان هایی که در آن مفصل پلاستیک ایجاد شده برای مدل 3×6——- 83
شکل 5-10  : نمایش المان هایی که در آن مفصل پلاستیک ایجاد شده برای مدل 5×4—– 84
شکل 5-11  : نمایش المان هایی که در آن مفصل پلاستیک ایجاد شده برای مدل 3×4—– 84
شکل 5-12: جابجایی نسبی طبقات سازه مدل 5×8 برای چهار شتابنگاشت تصادفی——– 85
شکل 5-13: جابجایی نسبی طبقات سازه مدل 5×4 برای چهار شتابنگاشت تصادفی——– 86
شکل 5-14  : نمایش المان هایی که در آن مفصل پلاستیک ایجاد شده برای مدل 5×4 برای مدل با دیوار صلب تر    87
شکل 5-15: جابجایی نسبی طبقات سازه مدل 5×4 برای مدل با دیوار صلب تر برای چهار شتابنگاشت تصادفی        88
 
 
 
فصل اول
« مطالعه ضریب رفتار و اجزاء تشکیل دهنده آن »
 آیین نامه های طراحی لرزه ای، نیروهای لرزه ای برای طراحی ارتجاعی سازه را از یک طیف خطی که وابسته به زمان تناوب طبیعی سازه و شرایط خاک محل احداث سازه می باشد، به دست می آورند و جهت در نظر گرفتن اثر رفتار غیر ارتجاعی و اتلاف انرژی بر اثر رفتار هیسترتیک ، میرائی و اثر مقاومت افزون سازه، این نیروی ارتجاعی را به وسیله ضریب کاهش مقاومت یا به بیانی دیگر ضریب رفتار سازه به نیروی طراحی مبدل می نماید. در حال حاضر گویا که در اغلب آیین نامه های طراحی لرزه ای مقادیر ضریب رفتار ارائه شده بر مبناء قضاوت مهندسی، تجربه و نظاره عملکرد سازه در زلزله های گذشته و چشم پوشی از تراز مقاومت افزون استوار می باشد، به همین دلیل محققین روش های تئوریکی جهت محاسبه ضریب رفنار ارائه نموده اند که در این فصل به گونه کامل تشریح گردیده می باشد.
 
1-1  مقدمه
به گونه کلی می توان گفت طراحی سازه ها بر اساس واکاوی های لرزه ای بر این مبنا می باشد که رفتار ساختمان پیش روی نیرو های ناشی از زلزله های کوچک، بدون خسارت در محدوده ارتجاعی باقی بماند و در هنگام وقوع زلزله های شدید که رفتار سازه وارد ناحیه غیر خطی می گردد ضمن حفظ پایداری کلی خود، خسارتهای سازه ای و غیر سازه ای را تحمل کند، به همین مقصود طراحی لرزه ای سازه در هنگام ورود به ناحیه غیر خطی مستلزم واکاوی های غیر خطی می باشد.
می توان گفت یک تحلیل دینامیکی غیر خطی بیانگر رفتار صحیح و واقعی سازه به هنگام وقوع زلزله می باشد امّا با در نظر داشتن پیچیده بودن و پر هزینه بودن واکاوی های غیر خطی و زمان بر بودن این نوع تحلیل ها، روشهای تحلیلی بر مبنا واکاوی در محدوده رفتار خطی سازه با نیروی کاهش یافته زلزله انجام می شود.
از طرفی تحلیل و طراحی سازه ها صرفا بر اساس رفتار ارتجاعی اعضاء و عدم در نظر داشتن رفتار غیر خطی در هنگام وقوع زلزله باعث ایجاد شدن طرحی غیر اقتصادی که شامل مقاطع سنگین برای طرح خواهد بود می گردد.
از اینرو آیین نامه های لرزه ای، نیروهای برای طراحی ارتجاعی سازه را از یک طیف خطی که وابسته به زمان تناوب طبیعی سازه و شرایط خاک محل احداث سازه می باشد، به دست می آورند و جهت در نظر گرفتن اثر رفتار غیر ازتجاعی و اتلاف انرژی بر اثر رفتار هیسترتیک، میرایی و اثر مقاومت افزون سازه این نیروی ارتجاعی را به وسیله ضریب کاهش مقاومت یا به بیانی دیگر ضریب رفتار سازه به نیروی طراحی مبدل می نمایند.
با در نظر داشتن اینکه ضرایب رفتار تعیین شده توسط آیین نامه های لرزه ای بر پایه مشاهدات عملکردی سیستم های سازه ای مختلف در زلزله های اتفاق افتاده و بر اساس قضاوت مهندسی استوار می باشد در جهت رفع نگرانی پژوهشگران بابت فقدان ضرایب رفتار معقول و مبتنی بر مطالعات تحقیقاتی و پشتوانه محاسباتی در سالهای اخیر آیین نامه ها لرزه ای بر این اساس مدون گردیده اند که رفتار های هیسترتیک، شکل پذیری، مقاومت افزون، میرایی و ظرفیت سازه در هنگام استهلاک انرژی را جهت محاسبه ضریب رفتار در نظر بگیرند.
در اغلب آیین نامه های طراحی لرزه ای مقادیر ضریب رفتار ارائه شده بر مبنا قضاوت مهندسی، تجربه و نظاره عملکرد سازه در زلزله های گذشته و چشم پوشی از تراز مقاومت افزون استوار می باشد. به همین دلیل مقادیر عددی ضرایب رفتار به کار برده در آیین نامه ها مختلف متفاوت می باشد به طوری که می توان گفت محدوده عددی ضریب رفتار برای سازه های بتن مسلح با سیستم قاب خمشی در آیین نامه های اروپایی مانند EC8 در محدوده ی 5/1 تا 5 می باشد در صورتیکه برای همین نوع سیستم سازه ای در آیین نامه های آمریکایی مقادیر ضریب رفتار تا عدد 8 هم اظهار گردیده می باشد، از اینرو می توان گفت سازه هایی که مطابق آیین نامه های EC8 طراحی شده اند دارای طراحی های سنگین تری نسبت به طراحی های که مطابق آیین نامه های آمریکایی انجام گرفته می باشد می باشند.
اگر به گونه خاص آیین نامه طراحی لرزه ای ایران را مورد مطالعه قرار دهیم، می توان گفت به دلیل آنکه ضرایب رفتار تعین شده بر مبنا قضاوت مهندسی می باشد دارای کاستی هایی به تبیین زیر می باشد:
1- برای سیستم های سازه ای، از یک نوع با ارتفاع ها و زمان تناوب ارتعاش متفاوت از ضرایب رفتار یکسانی بهره گیری میشود.
2- در R تاثیر شکل پذیری و مقاومت افزون و درجه نامعینی به صراحت نیامده می باشد.
3- اثر لرزه خیزی منطقه در  Rلحاظ نشده می باشد.
4- اثر شرایط خاک در R لحاظ نشده می باشد.
 
1-2  روشهای محاسبه ضریب رفتار
همانطور که از پیش ذکر گردید روشهای سنتی چگونگی محاسبه ضریب رفتار برای سیستم های سازه ای بر اساس قضاوت مهندسی انجام می شده می باشد، در طی سالهای اخیر روشهای علمی قابل اعتماد و جدیدی توسط تحقیقات نیومارک ارائه گردیده می باشد.
می توان گفت جدید ترین ارتباط های ارائه شده برای ضریب رفتار ارتباط ای می باشد که سه عامل شکل پذیری، مقاومت افزون و در جه نامعینی را در بر دارد. دو عامل شکل پذیری و مقاومت افزون برای کشور های مختلف می تواند متفاوت می باشد، زیرا به متغیر های کیفی و کمی متعددی مانند فرهنگ ساخت و ساز و روشهای اجرائی، ناحیه لرزه خیزی و آیین نامه بارگذاری و طراحی بستگی دارد.
از اوایل دهه 1980 در انجمن فن آوری کاربردی (ATC) در طی پژوهشهای فریمن و یوانگ کوشش محققین به سمت تجزیه ضریب رفتار به عوامل تشکیل دهنده آن سوق پیدا نمود.
قابل توجه می باشد که عامل نامعینی آغاز در آیین نامه های ATC-19 و ATC-40 و سپس در آیین نامه UBC-1997 مطرح گردید.
در سال 1995 محققین برای محاسبه ضریب رفتار ارتباط (1-1) را پیشنهاد نمودند.
(1-1)
که در ارتباط فوق  ضریب کاهش نیرو ناشی از مقاومت افزون و  ضریب کاهش نیرو ناشی از شکل پذیری و  کاهش نیرو ناشی از نامعینی یا به بیانی دیگر ضریب درجه نامعینی سازه می باشد. که به علت گسترده شدن مطلب و گسسته شدن موضوع اصلی از تشریح بیشتر آن  در این مطالعه اجتناب شده می باشد .
 
1-3  تشریح اجزای ضریب رفتار
1-3-1  شکل پذیری
1-3-1-1  ضریب شکل پذیری کلی سازه
در صورتیکه منحنی رفتار کلی سازه را اصطلاحا” به صورت منحنی الاستیک – پلاستیک (دو خطی) ایده آل نمائیم، طبق ارتباط (1-2) ضریب شکل پذیری کلی سازه که با  نمایش داده می گردد محاسبه می گردد:
(1-2)
بهتر می باشد مقدار ضریب شکل پذیری کلی سازه ، که نماینگر ظرفیت استهلاک انرژی اجزا یا کل سازه می باشد، از روشهای آزمایشگاهی تعیین نمود. رفتار کلی سازه که در شکل (2-1) نشان داده شده می باشد، تنها مربوط به سیستم هایی می باشد که می توانند انرژی را با یک رفتار پایدار مستهلک کنند، مانند قابهای مقاوم خمشی شکل پذیر ویژه، و برای سیستم های دیگر که کاهش شدید سختی و مقاومت دارند، تعریف تغییر مکان تسلیم و تغییر مکان حداکثر در ارتباط (1-2) می تواند نادرست باشد. می توان گفت تعیین ضریب  به خصوص برای سازه های بلندتر از یک طبقه کار پیچیده ای می باشد. برای محاسبه این ضریب غالباً از تغییر مکان نسبی طبقه به عنوان معیار تغییر مکان بهره گیری می‎گردد (شکل1-1).
شکل (1-1): نمودار منحنی ظرفیت یک سازه متعارف
 
1-3-1-2  ضریب کاهش نیرو توسط شکل پذیری
سازه ها توسط رفتار شکل پذیر مقدار قابل توجهی از انرژی زلزله را با رفتار هیسترتیک مستهلک می‎کنند، که مقدار این استهلاک انرژی، بستگی به مقدار شکل پذیری کلی سازه دارد. مقدار شکل پذیری کلی سازه نباید از شکل پذیری المانهای سازه فراتر رود. بدین مقصود، هنگام طراحی لازم می باشد حداقل مقاومت لازم سازه که شکل پذیری کلی آن را به حد شکل پذیری مشخص شده از قبل، محدود می‎کند، مشخص گردد .
همان گونه که در قسمتهای قبل، تبیین داده گردید، ضریب کاهش بر اثر شکل پذیری (  ) طبق ارتباط
(1-3)، با نسبت مقاومت ارتجاعی مورد نیاز به مقاومت غیر ارتجاعی مورد نیاز تعریف می گردد.
(1-3)
که در این ارتباط  مقاومت جانبی مورد نیاز، برای جلوگیری از تسلیم سیستم بر اثر یک زلزله مشخص و   مقاومت جانبی تسلیم مورد نیاز برای محدود کردن ضریب شکل پذیری کلی سازه  به مقداری کمتر و یا برابر با ضریب شکل پذیری کلی از پیش تعیین شده (هدف یا  ) وقتی که سیستم در معرض همان زلزله قرار گیرد، می باشد. به گونه کلی، در سازه هایی که در هنگام وقوع زلزله رفتار غیر ارتجاعی دارند، تغییر شکلهای غیر ارتجاعی با کاهش مقاومت جانبی تسلیم سازه (یا با افزایش ضریب )، افزایش مییابند.
برای یک زلزله مشخص و یک ضریب  معین، مشکل اساسی محاسبه حداقل ظرفیت مقاومت جانبی  می باشد که بایستی در سازه به مقصود جلوگیری از به وجود آمدن نیازهای شکل پذیری بزرگتر از ، تأمین گردد. در نتیجه محاسبه  برای هر زمان تناوب و هر شکل پذیری هدف، شامل عملیاتی تکراری می باشد. به این شکل که، مقاومت جانبی تسلیم ( ) برای سیستم در نظرگرفته و سیستم تحلیل می‎گردد، این ‎کار، تا زمانی ادامه می یابد که ضریب شکل پذیری کلی محاسبه شده ( ) با یک تولرانس مشخص، برابر ضریب شکل پذیری کلی هدف ( ) گردد و آنگاه مقاومت جانبی متناظر با این ضریب شکل پذیری،  نامیده می‎گردد.
برای تعیین ضریب کاهش بر اثر شکل پذیری، روش کار به این شکل می باشد که مقاومت جانبی ارتجاعی  و غیر ارتجاعی  که برای یک سیستم با زمان تناوب مشخص به دست آمده، این مقادیر به وزن سیستم، نرمال می‎شوند. این نیرو ها برای زمانهای تناوب مختلف سازه به دست می آید و با در نظر داشتن آن، طیف خطی و طیف غیر خطی با ضریب شکل پذیری  محاسبه می‎گردد. از از تقسیم طیف خطی به طیف غیر خطی، مقدار ضریب کاهش بر اثر شکل پذیری برای آن زلزله بخصوص و ضریب شکل پذیری هدف، به دست می آید  (شکل1-2 ).
شکل (1-2): طیف ارتجاعی و غیر ارتجاعی با شکل پذیری ثابت
 
 
1-3-2  مقاومت افزون[1]
هنگامی که یکی از اعضای سازه به حد تسلیم رسیده و اصطلاحاً در آن لولای خمیری تشکیل گردد، مقاومت سازه از دیدگاه طراحی در حالت بهره برداری به پایان می رسد، اما در حالت طراحی انهدام، پدیده فوق به عنوان پایان مقاومت سازه به حساب نمی آید، زیرا عضو مورد نظر همچنان می تواند با تغییر شکل غیر ارتجاعی، انرژی ورودی را جذب کند تا به مرحله گسیختگی و انهدام برسد. با تشکیل لولاهای خمیری، به تدریج سختی سازه با کاهش درجه نامعینی استاتیکی کاهش می یابد، و لی سازه همچنان پایدار می باشد و قادر خواهد بود پیش روی نیروهای خارجی از خود مقاومت نشان دهد. وقتی که نیروی خارجی باز هم افزایش یابد، طریقه تشکیل لولاهای خمیری نیز ادامه یافته و لولاهای بیشتری در سازه پدید می آید تا جایی که سازه از نظر استاتیکی ناپایدار شده و دیگر توان تحمل بار جانبی اضافی را نداشته باشد.
مقاومتی که سازه بعد از تشکیل اولین لولای خمیری تا مرحله مکانیزم (ناپایداری) از خود بروز می دهد، مقاوت افزون نامیده می گردد، در طراحی لرزه ای سازه ها مقاومت ارتجاعی مورد نیاز سازه را متناسب با مقاومت افزون آنها کاهش می دهند. برای این مقصود، مقدار ضریب رفتار سازه ها متناسب با مقاومت افزون افزایش داده می گردد تا مقاومت مورد نیاز کاهش یافته، محاسبه گردد.
سالهاست که پژوهشگران اهمیت مقاومت افزون را در جلوگیری از خراب شدن بعضی سازه ها به هنگام رخداد زلزله های شدید شناخته اند. برای مثال، در زلزله سال 1985 مکزیک، وجود مقاومت افزون عامل بسیار مؤثری در جلوگیری از خرابی بعضی ساختمانها بوده می باشد. همچنین زلزله سال 1369 (ه.ش) رودبار و منجیل بسیاری از ساختمانهای 7-8 طبقه در شهر رشت که دارای اتصالات خُرجینی و شکل پذیری ناچیز بودند، بر اثر وجود مقاومت افزون (که اکثراً به دلیل وجود عناصر غیر سازه ای، پارتیشن ها و نما ایجاد شده بود) از فرو ریختن کامل جان سالم به در بردند .
در مطالعات انجام شده بر روی میز لرزان برای ساختمانهای چند طبقه بتن مسلح و فولادی به وسیله پژوهشگران دانشگاه کالیفرنیا در برکلی در سالهای 1984 تا 1989 نیز بر اهمیت ضریب مقاومت افزون تأکید شده می باشد.
 
1-3-3  درجه نامعینی
نامعینی سیستم های سازه ای مفهوم مهمی می باشد که از دیرباز مورد توجه مهندسان بوده می باشد. پس از نظاره تخریب تعداد زیادی از سیستم های سازه ای با درجات نامعینی کم، در زلزله های 1994 نورتریج و 1995 کوبه، موضوع نامعینی سازه ای، به شکل جدی تری مطرح گردید. تاکنون تعریفها و تفسیرهای متفاوتی از نامعینی سازه ای، که وابسته به عدم قطعیت نیز و ظرفیت سازه هاست، ارائه شده می باشد. از این رو، بهره گیری از مفاهیم عدم قطعیت، مبنای یکی از روشهای مطالعه نا معینی سیستم های سازه ای تحت بارهای لرزه ای می باشد.
در سال 1978، کرنل برای در نظرگرفتن عدم قطعیت در سیستم های سازه ای، ضریبی بنام ضریب نامعینی پیشنهاد نمود. این ضریب به عنوان احتمال شرطی گسیختگی سیستم معرفی و اولین گسیختگی را که ممکن بود در هر یک از اعضای سازه های سکوی دریایی رخ دهد، مشخص مینمود.
هنداوی و فرانگوپل در سال 1994، یک ضریب نامعینی احتمالاتی را پیشنهاد کردند. ضریب پیشنهادی این پژوهشگران به صورت نسبت احتمال تسلیم اولین عضو منهای احتمال انهدام، به احتمال انهدام سیستم تعریف می‎گردید.
برترو پدر و پسر در سال 1999 برای اندازه اندگیزی نامعینی سازه‎های قابی تحت اثر حرکتهای زمین ناشی از زلزله، از مهفوم «درجه نامعینی» بهره گیری کردند. درجه نامعینی که این پژوهشگران مورد بهره گیری قرار دادند به عنوان تعداد نواحی بحرانی یا لولاهای خمیری در سیستم سازه‎ای تعریف می ‎گردد که مقدار قابل توجهی از انرژی هیسترتیک خمیری را قبل از انهدام سازه مستهلک می‎نمایند. در پژوهش های شده، اثرهای مقاومت افزون، ضرائب تغییرات نیاز و ظرفیت و دیگر عوامل، مطالعه شده و چنین نتیجه گیری شده می باشد، که جدا کردن نامعینی از عوامل دیگر دشوار می باشد.
در ATC-19  و  ATC-34 به منظورکمّی کردن قابلیت اعتماد سیستم های قاب لرزه ای، ضرایبی به عنوان ضرایب نامعینی پیشنهاد شده می باشد.
آیین نامه ساختمانی متحدالشکل (UBC)و مقررات NEHRP، از سال 1997 یک ضریب  با عنوان ضریب قابلیت اعتماد / نامعینی معرفی کرده اند که در نیروی جانبی زلزله برای طراحی ضرب می گردد. در آیین نامه ساختمانی بین المللی (IBC) سال 2000 نیز چنین ضریبی آورده شده می باشد. در پی این مطالعه ها گفته شده می باشد که برای رسیدن به ضریب نامعینی کمی و قابل قبول که بتواند در ارزیابی سازه ها و نیز طراحی مورد بهره گیری قرار گیرد، به تحقیقات و تجربیات گسترده ای نیاز می باشد.
 
1-4  محاسبه ضریب رفتار توسط واکاوی تاریخچه زمانی
در سالهای اخیر یوانگ برای به دست آوردن ضریب رفتار توسط واکاوی های دینامیکی روابطی را به صورت زیر پیش نهاد نموده می باشد.
(1-4)
که در ارتباط فوق  حداکثر برش پایه در سازه بر اساس تحلیل دینامیکی خطی ناشی از شتابنگاشتی که باعث مکانیزم شدن سازه بر اساس معیار خرابی می گردد و Vy برش پایه حداکثر بر اساس تحلیل دینامیکی غیر خطی در نگاشتی که باعث مکانیزم شدن سازه بر اساس معیار خرابی تعریف شده می گردد و Vs برش پایه در نگاشتی که باعث ایجاد اولین مفصل پلاستیک در یکی از المانهای سازه شده می باشد می باشد.
ضریب  برابر 4/1 در نظر گرفته می گردد.
خاطر نشان می گردد که در این پایان نامه از روش فوق جهت محاسبه ضریب رفتار توسط واکاوی دینامیکی تاریخچه زمانی بهره گیری شده می باشد.
 
تعداد صفحه :120
قیمت : 14700 تومان

این مطلب رو هم توصیه می کنم بخونین:   پایان نامه ارشد: بررسی تأثیر پارامترهای هندسی آبشکن و عمق کارگذاری ریپ رپ جهت محافظت از آبشکن

بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد

و در ضمن فایل خریداری شده به ایمیل شما ارسال می گردد.

پشتیبانی سایت :        ****       [email protected]

دسته‌ها: عمران