روش MBR در تصفیه اختلاط فاضلاب‌های شهری و صنعتی با هدف بازیافت پساب در چرخه تولید و مدل سازی آن

استاد راهنما:

دکتر سید احمد میرباقری

تابستان 92

 

 

 
تکه هایی از متن به عنوان نمونه :

چکیده

در پژوهش صورت گرفته عملکرد بیوراکتور غشایی مستغرق با غشاء هالو فایبر در تصفیه فاضلاب شهری، فاضلاب صنعتی و اختلاط فاضلاب شهری و صنعتی مورد مطالعه قرار گرفت. برای مطالعه کارایی تصفیه فاضلاب شهری از فاضلاب موجود در تصفیه خانه اکباتان تهران بهره گیری گردید. همچنین فاضلاب صنعتی یا مقاومت بالا با افزایش پارامترهای BOD، COD و TSS به ترتیب به حدود 1000، 2000 و 5000 میلی گرم در لیتر شبیه سازی گردید. فاضلاب اختلاط شهری و صنعتی نیز با ترکیب این دو به دست آمده که خصوصیاتی بین فاضلاب شهری و صنعتی را داشت. برای هر سه نوع فاضلاب مورد بهره گیری در پژوهش بهینه کردن زمان ماند هیدرولیکی مورد نظر قرار گرفت. با در نظر داشتن نتایج بدست آمده زمان ماند هیدرولیکی بهینه برای فاضلاب شهری 5 ساعت، فاضلاب صنعتی 17 ساعت و اختلاط فاضلاب شهری و صنعتی برابر 7 ساعت حاصل گردید. بر اساس نتایج درصد حذف برای BOD، COD، NH4 و TP در اختلاط فاضلاب شهری و صنعتی برابر 83/96%، 21/96%، 71/95% و 14/90% بدست آمد. نتایج بدست آمده نشان داد که بیوراکتورهای غشایی مستغرق با غشاء هالو فایبر برای فاضلاب شهری به گونه غیر اقتصادی اقدام کرده و همچنین در فاضلاب صنعتی نیز زمان ماند به مقدار قابل ملاحظه ای افزایش می‌یابد. در مقایسه با فاضلاب شهری و صنعتی، فاضلاب مختلط دارای خصوصیاتی بوده که باعث افزایش کارایی حذف و کاهش زمان ماند هیدرولیکی توسط بیوراکتور غشایی مستغرق و ایجاد شرایط اقتصادی برای تصفیه فاضلاب می گردد. همچنین با بهره گیری از شبکه های عصبی مصنوعی و توابع پایه شعاعی برای اختلاط فاضلاب شهری و صنعتی مدل سازی صورت گرفت. نتایج حاصل از مدل ارائه شده مربوط به داده های آموزش و تست برای BOD، COD، NH4 و TP بسیار موفق بوده و تطبیق داده های مدل شبکه عصبی با مدل آزمایشگاهی صورت گرفت.
کلید واژه: بیوراکتور غشایی مستغرق، تصفیه فاضلاب، زمان ماند بهینه، فاضلاب مختلط.
 
 

فهرست مطالب

عنوان                                            صفحه
فهرست جدول‌ها ه
فهرست شکل‌‌ها ‌و
فصل 1-   کلیات 1
1-1- مقدمه…………………………………………………………………………………………………….           1
1-2- روش‌های جدید تصفیه فاضلاب 3
1-2-1-   بیوراکتور غشایی MBR 3
1-2-2-   رآکتورهای بیولوژیکی با بستر متحرک MBBR 4
1-2-3-   سیستم رآکتورهای منفرد متوالی SBR 4
1-2-4-   سیستم UASB 5
1-2-5-   سیستم USBF 5
1-2-6-   سیستم بیولاک 6
1-2-7-   فرآیند صافی چکنده 7
فصل 2-    سیستم بیوراکتور غشایی (MBR) و مروری بر منابع 8
2-1- مقدمه……………………………………………………………………………………………………. ………………………………….. 8
2-2- معرفی و مطالعه سیستم 9
2-2-1-   انواع بیوراکتورهای غشایی از لحاظ چیدمان مدول غشایی 11
2-2-2-   انواع سیستم‌های MBR از لحاظ فرآیند کلی 13
2-2-3-   پارامترهای مهم در سیستم غشایی MBR 15
2-2-4-   مزایای سیستم بیوراکتور غشایی    MBR 16
2-2-5-   معایب سیستم MBR 17
2-3- معرفی غشا و مطالعه انواع غشاها 18
2-3-1-   تقسیم بندی غشاها بر اساس دامنه جداسازی 18
2-3-2-   انواع غشاء از حیث شکل 20
2-3-2-1-  غشاهای مسطح (Flat) 20
2-3-2-2-  غشاهای لوله ای (Tubular) 20
2-3-2-3-  اسپیرال (Spiral-wound) 21
2-3-2-4-  مقایسه و ویژگی انواع غشاء ها 22
2-3-3-   انواع غشا از لحاظ جنس 23
2-3-4-   انواع غشا از حیث کاربری فیلتراسیون 23
2-3-5-   انتخاب غشا 24
2-3-6-   گرفتگی غشا 24
2-3-6-1-  مکانیزم‌های گرفتگی 25
2-3-6-2-  راهکارهای کاهش گرفتگی غشا: 27
2-4- نمونه ای از تحقیقات انجام گرفته در دنیا (MBR) 27
2-5- جمع بندی 35
فصل 3-    مواد و روش های مورد بهره گیری در پژوهش 36
3-1- مقدمه       36
3-2- هدف پژوهش 37
3-3- پایلوت بیوراکتور غشایی (MBR) 37
3-3-1-   مخزن بیوراکتور 38
3-3-1-1-  مدول غشایی .. 39
3-3-1-2-  پمپ مکش    41
3-3-1-3-  فشارسنج    41
3-3-1-4-  پمپ بکواش………………………………………………………………………………………………………….. ……………………………… 42
3-3-1-5-  سیستم هوا دهی .. 43
3-3-2-   مخزن یا حوضچه آنوکسیک 44
3-3-3-   مخزن یا حوضچه بی هوازی 45
3-3-4-   مخزن تغذیه پایلوت 46
3-4- محل استقرار پایلوت 47
3-5- راه اندازی و بهره برداری از پایلوت 48
3-6- آزمایشات انجام شده 49
3-6-1-   اندازه گیری BOD 49
3-6-2-   اندازه گیری COD 50
3-6-3-   اندازه گیری TP، NH4، NO3 50
3-6-4-   اندازه‌گیری PH 50
3-6-5-   اندازه‌گیری MLSS و MLVSS 51
فصل 4- تئوری مدل سازی با شبکه عصبی 52
4-1- مقدمه……………………………………………………………………………………………………. ………………………………….. 52
4-2- ایده شبکه های عصبی مصنوعی 53
4-3- چگونگی عملکرد شبکه های عصبی مصنوعی 55
4-4- شبکه عصبی مصنوعی 58
4-4-1-   شبکه‎های تک لایه 58
4-4-2-   شبکه‎های چند لایه 59
4-5- توابع تحریک شبکه‎های عصبی 61
4-5-1-   تابع تحریک پله‌‌ای 61
4-5-2-   تابع تحریک خطی 61
4-5-3-   توابع تحریک سیگموید 61
4-6- بایاس……………………………………………………………………………………………………. ………………………………….. 62
4-7- آموزش شبکه عصبی 63
4-8- مدهای عملکردی شبکه عصبی 63
4-9- شبکه عصبی تابع بنیادی شعاعی (RBF) 64
4-9-1-   نکات قابل توجه در خصوص شبکه‎ تابع بنیادی شعاعی 65
4-9-1-1-  نرمال سازی بردارهای ورودی 67
4-9-2-   آموزش شبکه RBF 68
فصل 5-    تحلیل و تفسیر نتایج 69
5-1- نتایج آزمایشات 69
5-2- نتایج فاضلاب شهری 70
5-2-1-   نتایج آزمایشات BOD 70
5-2-2-   نتایج آزمایشات COD 73
5-2-3-   نتایج آزمایشات NH4 76
5-2-4-   نتایج آزمایشات TP 78
5-2-5-   نتایج آزمایشات TSS 79
5-2-6-   نتایج آزمایشات PH 80
5-3- نتایج فاضلاب صنعتی 81
5-3-1-   نتایج آزمایشات BOD 81
5-3-2-   نتایج آزمایشات COD 84
5-3-3-   نتایج آزمایشات NH4 87
5-3-4-   نتایج آزمایشات TP 89
5-3-5-   نتایج آزمایشات TSS 90
5-4- نتایج اختلاط فاضلاب شهری و صنعتی 91
5-4-1-   نتایج آزمایشات BOD 91
5-4-2-   نتایج آزمایشات COD 95
5-4-3-   نتایج آزمایشات NH4 97
5-4-4-   نتایج آزمایشات TP 100
5-4-5-   نتایج آزمایشات TSS 101
5-5- نتایج مدل سازی برای فاضلاب مختلط 102
5-5-1-   مدل سازی BOD خروجی 103
5-5-2-   مدل سازی COD خروجی 107
5-5-3-   مدل سازی NH4 خروجی 111
5-5-4-   مدل سازی TP خروجی 115
فصل 6-    نتیجه گیری و پیشنهادات 120
6-1- نتیجه گیری 120
6-2- پیشنهادات 122
فهرست مراجع 123
پیوست   127
فهرست جدول‌ها
عنوان                                            صفحه
جدول( ‏2‑1) مزایا و معایب چیدمان مدول غشایی در حالت غوطه‌ور و خارج از بیوراکتور 13
جدول( ‏2‑2) مقایسه اشکال مختلف غشاهای مورد بهره گیری در MBR از جنبه های گوناگون 22
جدول( ‏2‑3) مزایا و معایب هر یک از اشکال غشاهای مورد بهره گیری در MBR 22
جدول( ‏3‑1) مشخصات غشاء هالو فایبر مورد بهره گیری در پایلوت 40
جدول( ‏3‑2) ویژگی‌های فاضلاب ورودی تصفیه خانه فاضلاب شهرک اکباتان (مقادیر بحرانی) 49
جدول( ‏5‑1) مشخصات متغییر های ورودی و خروجی در شبکه عصبی مصنوعی 102
جدول( ‏5‑2) مشخصات مربوط به مدل حاصل از متغییر های ورودی به صورت جداگانه 105
جدول( ‏5‑3) مشخصات مربوط به مدل حاصل از متغییر های ورودی به صورت گروه دو تایی 106
جدول( ‏5‑4) مشخصات مربوط به مدل حاصل از متغییر های ورودی به صورت گروه سه تایی 106
جدول( ‏5‑5) مشخصات مربوط به مدل حاصل از متغییر های ورودی به صورت گروه چهار تایی 107
جدول( ‏5‑6) مشخصات مربوط به مدل حاصل از متغییر های ورودی به صورت جداگانه 109
جدول( ‏5‑7) مشخصات مربوط به مدل حاصل از متغییر های ورودی به صورت گروه دو تایی 110
جدول( ‏5‑8) مشخصات مربوط به مدل حاصل از متغییر های ورودی به صورت گروه سه تایی 110
جدول( ‏5‑9) مشخصات مربوط به مدل حاصل از متغییر های ورودی به صورت گروه چهار تایی 111
جدول( ‏5‑10) مشخصات مربوط به مدل حاصل از متغییر های ورودی به صورت جداگانه 113
جدول( ‏5‑11) مشخصات مربوط به مدل حاصل از متغییر های ورودی به صورت گروه دو تایی 114
جدول( ‏5‑12) مشخصات مربوط به مدل حاصل از متغییر های ورودی به صورت گروه سه تایی 114
جدول( ‏5‑13) مشخصات مربوط به مدل حاصل از متغییر های ورودی به صورت گروه چهار تایی 115
جدول( ‏5‑14) مشخصات مربوط به مدل حاصل از متغییر های ورودی به صورت جداگانه 117
جدول( ‏5‑15) مشخصات مربوط به مدل حاصل از متغییر های ورودی به صورت گروه دو تایی 118
جدول( ‏5‑16) مشخصات مربوط به مدل حاصل از متغییر های ورودی به صورت گروه سه تایی 118
جدول( ‏5‑17) مشخصات مربوط به مدل حاصل از متغییر های ورودی به صورت گروه چهار تایی 119
 
فهرست شکل‌‌ها
عنوان                                            صفحه
شکل( ‏2‑1) طرح شماتیک دو بعدی از یک سیستم بیوراکتور غشایی 9
شکل( ‏2‑2) چگونگی تجزیه بیولوژیکی و جداسازی فیزیکی در سیستم بیوراکتور غشایی 11
شکل( ‏2‑3) بیوراکتور غشایی در دو حالت غوطه‌ور و خارج از بیوراکتور 12
شکل( ‏2‑4) انواع بیوراکتورهای غشایی از حیث فرآیند کلی 14
شکل( ‏2‑5) تقسیم بندی انواع غشاء ها بر اساس دامنه جداسازی 18
شکل( ‏2‑6) غشا مسطح مورد بهره گیری در بیوراکتورهای غشایی 20
شکل( ‏2‑7) غشا هالو فایبر یا رشته ای مورد بهره گیری در بیوراکتورهای غشایی 21
شکل( ‏2‑8) غشای اسپیرال 22
شکل( ‏2‑9) انواع غشا از حیث کاربری فیلتراسیون 24
شکل( ‏2‑10) شکل شماتیک انواع مکانیزم‌های گرفتگی 25
شکل( ‏3‑1) مخزن بیوراکتور غشایی به همراه متعلقات مربوط به آن 38
شکل( ‏3‑2) غشاء هالو فایبر و متعلقات آن در مخزن بیوراکتور غشایی 39
شکل( ‏3‑3) غشاء هالو فایبر و لوله های متصل به آن 41
شکل( ‏3‑4) پمپ مکش مورد بهره گیری در پایلوت 41
شکل( ‏3‑5) فشار سنج 42
شکل( ‏3‑6) پمپ بکواش 42
شکل( ‏3‑7) غشاء هالو فایبر و لوله های متصل به آن 43
شکل( ‏3‑8) آرایش هواده ها در بیوراکتور 44
شکل( ‏3‑9) حوضچه آنوکسیک مورد بهره گیری در پایلوت 45
شکل( ‏3‑10) حوضچه بی هوازی مورد بهره گیری در پایلوت 46
شکل( ‏3‑11) پمپ تغذیه و مخزن تغذیه پایلوت 47
شکل( ‏3‑12) پایلوت بیوراکتور غشایی واقع در تصفیه خانه اکباتان تهران 48
شکل( ‏3‑13) دستگاه اسپکتروفوتومتر جهت اندازه گیری اندازه نمونه ها 50
شکل( ‏3‑14) دستگاه PH متر 51
شکل( ‏4‑1) شمایی از نواحی اصلی یک نرون بیولوژیکی 56
شکل( ‏4‑2) شمایی از ساختار یک نرون مصنوعی 56
شکل( ‏4‑3) شمایی از ساختار یک شبکه تک لایه 59
شکل( ‏4‑4) شمایی از ساختار یک شبکه دو لایه 60
شکل( ‏4‑5) منحنی نمایش تابع تحریک نرون های RBF 65
شکل( ‏4‑6) مسطح پاسخ یک نرون RBF با دو ورودی 66
شکل( ‏4‑7) ساختار یک شبکه RBF 68
شکل( ‏5‑1) تغییرات غلظت BOD ورودی و خروجی و درصد حذف نسبت به زمان ماند هیدرولیکی 70
شکل( ‏5‑2) تغییرات غلظت MLSS و MLVSS و درصد MLVSS/MLSS نسبت به زمان ماند هیدرولیکی 71
شکل( ‏5‑3) منحنی تعیین ثابت‌های سینتیکی زیستی K و Ks بر حسب BOD 72
شکل( ‏5‑4) منحنی تعیین ثابت‌های سینتیکی زیستی Y و Kd بر حسب BOD 73
شکل( ‏5‑5) تغییرات غلظت COD ورودی و خروجی و درصد حذف نسبت به زمان ماند هیدرولیکی 74
شکل( ‏5‑6) منحنی تعیین ثابت‌های سینتیکی زیستی K و Ks بر حسب COD 75
شکل( ‏5‑7) منحنی تعیین ثابت‌های سینتیکی زیستی Y و Kd بر حسب COD 75
شکل( ‏5‑8) تغییرات غلظت NH4 ورودی و خروجی و درصد حذف نسبت به زمان ماند هیدرولیکی 76
شکل( ‏5‑9) تغییرات غلظت NO3 ورودی و خروجی نسبت به زمان ماند هیدرولیکی 77
شکل( ‏5‑10) تغییرات غلظت TP ورودی و خروجی و درصد حذف نسبت به زمان ماند هیدرولیکی 78
شکل( ‏5‑11) تغییرات غلظت TSS ورودی و خروجی نسبت به زمان ماند هیدرولیکی 79
شکل( ‏5‑12) تغییرات غلظت PH ورودی و خروجی نسبت به زمان ماند هیدرولیکی 80
شکل( ‏5‑13) تغییرات غلظت BOD ورودی و خروجی و درصد حذف نسبت به زمان ماند هیدرولیکی 81
شکل( ‏5‑14) تغییرات غلظت MLSS و MLVSS و درصد MLVSS/MLSS نسبت به زمان ماند هیدرولیکی 82
شکل( ‏5‑15) منحنی تعیین ثابت‌های سینتیکی زیستی K و Ks بر حسب BOD 83
شکل( ‏5‑16) منحنی تعیین ثابت‌های سینتیکی زیستی Y و Kd بر حسب BOD 84
شکل( ‏5‑17) تغییرات غلظت COD ورودی و خروجی و درصد حذف نسبت به زمان ماند هیدرولیکی 85
شکل( ‏5‑18) منحنی تعیین ثابت‌های سینتیکی زیستی K و Ks بر حسب COD 86
شکل( ‏5‑19) منحنی تعیین ثابت‌های سینتیکی زیستی Y و Kd بر حسب COD 86
شکل( ‏5‑20) تغییرات غلظت NH4 ورودی و خروجی و درصد حذف نسبت به زمان ماند هیدرولیکی 87
شکل( ‏5‑21) تغییرات غلظت NO3 ورودی و خروجی نسبت به زمان ماند هیدرولیکی 88
شکل( ‏5‑22) تغییرات غلظت PH ورودی و خروجی نسبت به زمان ماند هیدرولیکی 89
شکل( ‏5‑23) تغییرات غلظت TP ورودی و خروجی و درصد حذف نسبت به زمان ماند هیدرولیکی 90
شکل( ‏5‑24) تغییرات غلظت TSS ورودی و خروجی و درصد حذف نسبت به زمان ماند هیدرولیکی 91
شکل( ‏5‑25) تغییرات غلظت BOD ورودی و خروجی و درصد حذف نسبت به زمان ماند هیدرولیکی 92
شکل( ‏5‑26) تغییرات غلظت MLSS و MLVSS و درصد MLVSS/MLSS نسبت به زمان ماند هیدرولیکی 93
شکل( ‏5‑27) منحنی تعیین ثابت‌های سینتیکی زیستی K و Ks بر حسب BOD 94
شکل( ‏5‑28) منحنی تعیین ثابت‌های سینتیکی زیستی Y و Kd بر حسب BOD 94
شکل( ‏5‑29) تغییرات غلظت COD ورودی و خروجی و درصد حذف نسبت به زمان ماند هیدرولیکی 95
شکل( ‏5‑30) منحنی تعیین ثابت‌های سینتیکی زیستی K و Ks بر حسب COD 96
شکل( ‏5‑31) منحنی تعیین ثابت‌های سینتیکی زیستی Y و Kd بر حسب COD 97
شکل( ‏5‑32) تغییرات غلظت NH4 ورودی و خروجی و درصد حذف نسبت به زمان ماند هیدرولیکی 98
شکل( ‏5‑33) تغییرات غلظت NO3 ورودی و خروجی نسبت به زمان ماند هیدرولیکی 99
شکل( ‏5‑34) تغییرات غلظت PH ورودی و خروجی نسبت به زمان ماند هیدرولیکی 100
شکل( ‏5‑35) تغییرات غلظت TP ورودی و خروجی و درصد حذف نسبت به زمان ماند هیدرولیکی 101
شکل( ‏5‑36) تغییرات غلظت TSS ورودی و خروجی و درصد حذف نسبت به زمان ماند هیدرولیکی 102
شکل( ‏5‑37)مدل مربوط به غلظت BOD خروجی برای داده های تست و مشخصات آن 103
شکل( ‏5‑38)مدل مربوط به غلظت BOD خروجی برای داده های آموزش و مشخصات آن 104
شکل( ‏5‑39)مدل مربوط به غلظت BOD خروجی برای داده های کل و مشخصات آن 104
شکل( ‏5‑40)مدل مربوط به غلظت COD خروجی برای داده های تست و مشخصات آن 107
شکل( ‏5‑41)مدل مربوط به غلظت COD خروجی برای داده های آموزش و مشخصات آن 108
شکل( ‏5‑42)مدل مربوط به غلظت COD خروجی برای داده های کل و مشخصات آن 108
شکل( ‏5‑43)مدل مربوط به غلظت NH4 خروجی برای داده های تست و مشخصات آن 111
شکل( ‏5‑44)مدل مربوط به غلظت NH4 خروجی برای داده های آموزش و مشخصات آن 112
شکل( ‏5‑45)مدل مربوط به غلظت NH4 خروجی برای داده های کل و مشخصات آن 112
شکل( ‏5‑46)مدل مربوط به غلظت TP خروجی برای داده های تست و مشخصات آن 115
شکل( ‏5‑47)مدل مربوط به غلظت TP خروجی برای داده های آموزش و مشخصات آن 116
شکل( ‏5‑48)مدل مربوط به غلظت TP خروجی برای داده های کل و مشخصات آن 116
 

این مطلب رو هم توصیه می کنم بخونین:   پایان نامه درجه کارشناسی ارشد رشته عمران گرایش سازه :تحلیل خطر لرزه ای ایالت قم

فصل 1-               کلیات

 
 
 
 
 
 
 
 
 
 
 
 
 

فصل اول
کلیات

 

1-1-    مقدمه

امروزه به دلیل افزایش جمعیت و حجم زیاد فاضلاب نیاز به سیستم‌های جدید برای تصفیه فاضلاب احساس می گردد. سیستم‌های جدید مزایایی دارند که مانند آن‌ها می‌توان به کیفیت بهتر آب خروجی تصریح نمود، دیگر اینکه سیستم‌های جدید فضای کمتری را اشغال می‌کنند، ابعاد تصفیه خانه کوچک شده و حتی به نصف سیستم‌های قدیمی می‌رسند، همچنین لجن تولیدی نیز کاهش می‌یابد. یکی از مزایای مهم سیستم‌های جدید کاهش ابعاد راکتور تا 40 تا 60 درصد می‌باشد.]1[ در این فصل به چند مورد از سیستم‌های جدید تصریح می گردد.
عمده تصفیه خانه های موجود در ایران به روش لجن فعال، تصفیه را انجام می‌دهند.]2[ از آنجا که مخازن ته نشینی ثانویه یکی از اجزای اصلی این روش به شمار می‌طریقه، در نظر داشتن معضلات بهره برداری آن‌ها بسیار مهم می‌باشد. مخازن ته نشینی ثانویه تأثیر حذف جامدات بیولوژیکی تولید شده در راکتور هوادهی، زلال سازی پساب و تغلیظ اولیه لجن را به عهده دارند. لیکن این مخازن با محدودیت‌های فراوانی مواجه هستند که کارایی و سودمندی آن‌ها را کاهش می‌دهد.]3[ در پژوهش صورت گرفته کوشش بر آن گردید تا کارایی روش بیوراکتورهای غشایی در مقیاس پایلوت در تصفیه اختلاط فاضلاب‌های شهری و صنعتی مورد مطالعه قرار گیرد که در این راستا از فاضلاب تصفیه خانه اکباتان بهره گیری گردید.
در فصل اول این پژوهش به تبیین مختصری درمورد کلیات تصفیه فاضلاب، انواع روش‌های تصفیه و فرایندهای بیولوژیکی پرداخته شده می باشد.
در فصل دوم تبیین تفصیلی فرایند MBR[1] انواع غشا و مزایا و معایب MBR و تاریخچه ای از مطالعات انجام شده به روش MBR، پرداخته شده می باشد.
در فصل سوم روش پژوهش، چگونگی ساخت و بهره برداری از پایلوت، مهیا کردن شرایط لازم و مواد و وسایل مورد بهره گیری در پژوهش ارائه گردیده می باشد.
در فصل چهارم مفاهیم مربوط به مدل سازی با شبکه عصبی مصنوعی ارائه شده می باشد.
فصل پنجم به ارائه نتایج حاصل از انجام آزمایشات به تجزیه و تحلیل و تفسیر نتایج اختصاص یافته می باشد.
در فصل ششم به نتیجه گیری و جمع بندی کلی پرداخته شده و پیشنهادات جهت تحقیقات آتی ارائه گردیده می باشد.

1-2-    روش‌های جدید تصفیه فاضلاب

وجود آلاینده ها در آب باعث تغییراتی در خواص فیزیکی و شیمیایی و حتی بیولوژیکی آب شده و در نهایت باعث اثرات منفی بر روی سلامت بشر و محیط زیست می گردد.]4[ پس تصفیه فاضلاب‌ها و حذف عوامل آلاینده موجود در آن از اهمیت خاصی برخوردار می باشد.]5[ روش‌های تصفیه فاضلاب شهری و صنعتی را می‌توان بر اساس معیارهای مختلفی تقسیم بندی نمود. همان گونه که قبلاً تصریح گردید اکثر تصفیه خانه های موجود در ایران از نوع لجن فعال بوده و این گونه تصفیه خانه ها مورد توجه وزارت نیرو کشور می‌باشد. در ادامه بحث به روش‌های جدید تصفیه فاضلاب می‌پردازیم و آن‌ها را معرفی می‌کنیم زیرا سیستم‌های جدید دارای مزیت‌های فراوانی نسبت به روش‌های سنتی تصفیه فاضلاب می‌باشد.]1[
1 Membrane BioReactor
 
***ممکن می باشد هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود اما در فایل دانلودی همه چیز مرتب و کامل و با فرمت ورد موجود می باشد***

متن کامل را می توانید دانلود نمائید

زیرا فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به گونه نمونه)

اما در فایل دانلودی متن کامل پایان نامه

 با فرمت ورد word که قابل ویرایش و کپی کردن می باشند

موجود می باشد

تعداد صفحه :176

قیمت : 14700 تومان

***

—-

دسته‌ها: عمران